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ABSTRACT 

Organophosphorus (OP) nerve agents are a serious threat to military and civilian personnel, so 
rapid detection of OP compounds in all of these forms is of paramount importance to prevent casualties. 
Recently, we combined porous polyurethane foam formed in situ from water-miscible hydrophilic ure-
thane prepolymers and enzymes such as ChEs. One of the advantages of this technique imparted to the 
immobilized enzymes is resistance to denaturing events. Most important, the enzyme will not leach from 
the polyurethane support so the ChE-badge can now be used to sample for OPs in diverse environments 
such as soil and large bodies of water, as well as conventional sources such as air. In addition, immobi-
lized enzyme badges are being designed with a unique attribute not present in the current non-
immobilized detectors: a rapid field system to identifying which OP is present. For instance, organophos-
phorus hydrolase (OPH) hydrolyzes sarin more readily than soman, while laccase hydrolyzes the VX 
agent preferentially over the G agent OPs. Currently, we are evaluating polyurethane immobilized laccase 
for long-term stability and kinetic properties of VX hydrolysis. Thus, the immobilized sensor can provide 
new features and testing of more diverse environments than the M256A1 and M272 kits combined. Also, 
the ability to identify the OP toxin in real-time using the immobilized differential detector would aid in 
treatment and securing the contaminated area, in the identification of the use of OPs, and permitting first 
responders to identify the OP present in a civilian terrorist act.  

†Telephone: 301 319 9987; fax: 301 319 9571  
   E-mail: Richard.Gordon@na.amedd.army.mil 
 

INTRODUCTION 
 
   Traditional analysis of cholinesterase inhibitors is performed using gas and liquid chromatogra-
phy and mass spectrometry (Witkiewicz, et al., 1990). These techniques have significant drawbacks when 
considering an individual kit for field deployment, including lack of portability, simplicity, cost, and rapid 
results. An alternate technology is a biosen-
sor. Biosensors have been widely used to de-
tect biological, pharmacological, or clinically 
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covalently have been prepared by a variety of processes (Ghindilis, et al, 1996). The drawback to these 
methods includes lack of enzyme stability at ambient conditions, leaching from the surface, sensitivity to 
denaturating conditions, and short half-life when in solution. Currently fielded spot chemical agent detec-
tor kits and even water test kits use dry eel ChE non-covalently applied onto fiber or ion-exchange paper. 
It can only be exposed to air/vapor or at most several drops of aqueous solutions. Wood and coworkers 
(Wood, et al., 1982), using isocyanate-based polyurethane prepolymers (Hypol®), found that a number of 
enzymes could be covalently bound to this polymer, and that every enzyme retained activity to varying 
degrees. We have combined a porous polyurethane foam formed in situ from water-miscible hydrophilic 
urethane prepolymers and enzymes such as ChEs, producing immobilized enzyme sponges (Gordon, et 
al., 1999; Ember, 1997; Medlin, 1998). In this method, the enzyme becomes an integral part of the solid 
support (figure 1). Some of the advantages of this technique include retention of similar kinetic character-
istics as the soluble form of the enzyme. Most important, the immobilized enzyme retains high activity 
after prolonged storage, and it is resistant to the detrimental effects of low and high temperatures, and 
long exposure to the environment. In addition, because the enzymes are covalently attached to the poly-
urethane, they will not leach from this polymer support so that the product - an OP badge - can now be 
used to sample for chemical weapons and pesticides in anything from soil, water, to air.  
 

METHODS 

Enzymes: Acetycholinesterase (AChE) was purified to homogeneity from fetal bovine serum using pro-

Figure 3. Computer model of the surface of bu-
tyrylcholinesterase based on the x-ray crystal 
structure. Left model: A speckled area in the 
middle represents the active site gorge through 
which substrate and OP must pass to get to the 
active site. Lysine residues on the surface of the 
enzyme (shown in black) are possible coupling 
sites for cross-linking to the prepolymer, and do 
not interfere with the gorge. Right model: 180o

rotation shows the backside of the enzyme and 
additional coupling sites to lysine moieties. 

Figure 2. Apparatus for combining enzymes in 
aqueous buffer and prepolymer. Complete 
mixing is evident at the end of the mixing sta-
tor by the uniform and consistent gray (right). 
 

Figure 4. Biosensor, con-
sisting of immobilized 
AChE and polyurethane 
polymer. The biosensor 
depicted here is about the 
size of a pencil eraser. 



BASF, Specialty Chemicals, Parsippany, 
NJ) and an equivalent volume of water 
miscible prepolymer (TDI Hypol 3000 
prepolymer, Dow Chemical, Lexington, 
MA). The 2-phase system, enzyme and 
prepolymer, is mixed by a method we 
modified from the adhesive industry. The 
mixing apparatus uses a 1:1 ratio double 
barrel chamber and a mixing stator (figure 
2, CPA, Inc., 21 Starline Way, Cranston, 
RI  02921). The isocyanate functional 
group of the Hypol prepolymer reacts 
with the surface amine groups of enzymes 
(figure 1and 3; Gordon, et al., 1999; Em-
ber, 1997).  
 

Figure 3 depicts possible cross-
linking sites between BChE surface lysine 
groups and the prepolymer. Similar com-
puter models of AChE, OPH, and laccase 
demonstrate cross-linking sites that would 
not interfere with the active site of the 
enzymes. The mixed material ejected 
from the mixing stator can be ejected into 
a mold to form any size or shape product. 
Alternatively, the immobilized product 
can be spotted (as a dot of glue) onto a 
paper or rigid plastic backing, generating 

the immobilized ChE biosensor ticket. A 5 mg biosensor is shown in figure 4 (not to scale).  
 
Determination of immobilized enzyme activity: Several different techniques to determine the activity of 
the immobilized ChE enzymes in the biosensor are shown in the scheme in figure 5. Detection can be per-
formed qualitatively by the human eye for visible chromagens, or dark-adapted eyes for chemilumin-
escent chromagens (Parari, et al, 1993; Birman, 1985; Okabe, et al., 1977).   Detection can also be per-
formed quantitatively using portable handheld devices, which measure fluorescence, chemiluminescence, 
and visible chromagens. Typically, reactions of the immobilized enzymes were monitored spectro-
photometrically, e.g., by the Ellman assay for ChEs (De La Hoz,, et al., 1986), in a cuvette containing a 
stir bar and the biosensor.  

 
 

RESULTS 
 

ACh ChE Acetate + Choline

 Betaine
aldehyde+H2O2

Choline
oxidase O2+

Choline
oxidase O2+

H2O2  Betaine+

2H2O2

carbon electrode electrochemical detection

luminol

fluorescent adducts
visible adducts

chemiluminescence

fluorescence (CPM, Amplex)
chromogenic (IDA, DTNB, Amplex)

(substrates)

A)

2H2O2 +B) Amplex Red horseradish peroxidase Resorufin (red or fluorescent)

OP+
 X 1.

 2.

ChE

Figure 5. A) Schemes for detecting choli-
nesterase activity of the biosensor including visi-
ble, fluorescent, chemiluminescent, and electro-
chemical methods. In reaction 1, the biosensor 
ChE reacts with OP, and the enzyme is inhibited, 
so no change in color is generated. In reaction 2, 
uninhibited ChE cleaves the substrate, and can 
produce a variety of detection results. B) Specific 
mechanism for the biosensor to yield resorufin, 
both a visible red and a fluorescent indicator. 



Capacity of biosensor for multiple immobilized enzymes and coupled reactions: We found that the poly-
mer badge has a significantly higher loading capacity for ChEs than the amount of purified BChE or 
AChE we added. Therefore, adding larger quantities of enzyme during synthesis could increase the final 
ChE activity of the biosensor. When increasing amounts of a nonspecific protein, such as bovine serum 
albumin that contains no ChE activity, were added to a constant amount of purified AChE and the mixture 
cured, there was no reduction in biosensor ChE activity, even when there was a 1000-fold excess of BSA. 

Figure 6. Long-term stability of BChE biosen-
sor after continuous exposure to various tem-
peratures. 
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Figure 8. Relative reaction rates of soluble 
BChE and biosensor BChE at different tem-
peratures relative to 30oC. 

Figure 7. Top: Immobilized choline oxidase and 
soluble form of the enzyme display similar kinetic 
properties. Bottom: pH profiles of soluble and im-
mobilized choline oxidase are identical and exhibit 
the same pH optimum as the AChE biosensor or 
soluble AChE. 
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8), the coupled reactions depicted in the multiple assay scheme (figure 5) can be simultaneous optimized 
for both immobilized enzymes. 
 

As expected for similar kinetic parameters, the relative rate of substrate hydrolysis and generation 
of color is identical for the soluble and immobilized ChEs, as shown in figure 8. While the enzyme is sta-
ble at significantly lower temperatures, both enzyme forms demonstrate temperature dependence. 
 
Sensor color reactions:  Figure 9 is an example of the biosensor poisoned by OP (tube B, middle), bio-
sensor exposed to an aqueous solution in the absence of OP (tube A, left), and a tube without the biosen-

AChE 
Sensor 

Blank OP -
poisoned 

Figure 9. Immobilized AChE biosensor after 
exposure to OP in aqueous solution using the 
resorufin indicator reaction. Tube A and B 
have AChE immobilized sensor. Tube B sen-
sor was poisoned with OP prior to using the 
indicator; color developed was observed in 
tube A, but is lacking in tube B. 

Figure 10. Comparison of a current non-covalent 
ChE ticket (A) and immobilized AChE biosensor 
(B) after exposure to aqueous solutions. Note that 
the time scale (x-axis) is minutes for the existing 
tickets and days for the immobilized AChE bio-
sensor.  
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do not dissociate (leach) from the polymer support. Therefore, the immobilized enzyme biosensor can be 
used to test water or even left in liquid or other environments for long-term monitoring.  

 
Existing fielded OP tickets from the United States and other countries contain eel cholinesterase 

dried (not covalently attached) onto an ion-exchange filter paper. These tickets lost more than 80% of 
their original activity in less than 5 minutes in various aqueous conditions, including pH 8 phosphate 
buffer or brackish water (figure 10A). Therefore, these tickets can only detect OPs in vapor or a drop of 
solution placed on the paper. In contrast to these tickets, the AChE activity in the immobilized biosensor 
was stable for almost 60 days in continuous immersion in aqueous samples including Allegheny River 
(fresh water, figure 10B) or brackish water. Since the results were identical for autoclaved and untreated 
river water, the immobilized enzymes were also resistant to microbial induced proteolytic degradation. 
Also note that the same biosensor was assayed multiple times over many days, so it is evident that the 

immobilization process confers dramatic 
stability to covalently coupled AChE, and 
provides further evidence that the enzymes 
do not leach from the polyurethane matrix. 

 
The biosensor is less sensitive to events that 
cause false positives: In addition to robust-
ness to temperature extremes and washout 
by aqueous environments, the biosensor is 
resistant to saturated organic vapors. Many 
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Figure 11. The biosensor (immobilized AChE) 
is resistant to false positives caused by con-
tinuous exposure to organic vapors, such as 
diesel and gasoline fumes. 

TABLE 1. Time-Dependent Inhibition of  
ChEs by MEPQ 

ChE Enzyme 
Form 

Bimolecular rate constant 
(M-1 min-1) ± SD 

AChE soluble 1.59 ± 0.52 x 108 

 biosensor 1.00 ± 0.28 x 108 

BChE soluble 4.15 ± 0.78 x 107 

 biosensor 4.21 ± 2.00 x 107 
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Figure 13. Differential hydrolysis of the OP so-
man. Soman is not rapidly hydrolyzed by OPH or 
laccase, which hydrolyze sarin and VX, respec-
tively. In contrast, after 10 min OPAA hydro-
lyzed the soman completely so that now an AChE 
biosensor was no longer inhibited.  

Biosensor Sensitivity to Organophosphates: The 
biosensor composed of immobilized ChE and the 
soluble form of the enzyme exhibited the same 
titration curve to OP, as illustrated in figure 12. 
Furthermore, time-dependent inhibition of AChE 
and BChE by the organophosphate MEPQ yielded 
the same bimolecular rate constants of inhibition 
for soluble or immobilized AChE or BChE 
(Gordon, et al., 1999) (Table 1). These data dem-
onstrate that the immobilized ChEs react to and 
detect OPs in the same manner as the soluble 
form of the ChEs, even though the biosensor has 
increased stability to adverse environmental as-
saults and is cross-linked to the polymer (figure 
1).  
 
Differential OP Biosensor: The sensors we pro-
pose will have an additional unique attribute: We 
are developing a field system capable of differen-
tial identification of the type of OP contamination 
that occurred, e.g., sarin or soman. This would aid 
in the decontamination and treatment of OP con-
taminated individuals and permit tracking of OPs 
from a terrorist organization without removing samples to a central laboratory. The badge would be sub-
divided into compartments; each containing immobilized enzymes that behave uniquely to the different 
OPs (Gordon, et al., 1999). For instance, one strain of OPH hydrolyzes sarin more readily than soman, 
while OPAA hydrolyzes soman, and laccase hydrolyzes VX. To this end, we have successfully immobi-
lized OPH, OPAA, and laccase using the same Hypol TDI prepolymer and conditions used for ChE im-
mobilizations. In the first step, the solution containing a suspected OP (either in water, dirt, or after swab-
bing) would be added to a series of these differential immobilized enzymes. After 10 min, these enzymes 
would be removed as they are immobilized to the polyurethane, and the ChE-biosensor added. An unin-
hibited biosensor would indicate that an enzyme hydrolyzed the OP, and therefore which OP was present. 
This procedure can be seen in figure 13: The OP present was soman, based on time-dependent hydrolysis 
by OPAA, but not laccase or OPH.  

 
 
 

CONCLUSIONS 
 

We have demonstrated a unique immobilized enzyme biosensor system for the detection of OP 
contamination. This biosensor is versatile, durable, and reusable for sampling water and air or almost any 
environment. We have shown that the immobilized enzyme is active over 60 days, whereas existing OP 



These immobilized enzyme badges have an additional unique attribute not present in the existing 
non-immobilized detectors: a rapid field system capable of identifying which OP is present. This is possi-
ble because the immobilization process stabilizes the enzymes that behave uniquely to different OPs. For 
instance, organophosphorus hydrolase (OPH) hydrolyzes sarin more readily than soman, while laccase 
hydrolyzes the OP VX preferentially over G-agent OPs.  

 
The immobilized polyurethane enzymes will make versatile biosensors for detecting organophos-

phates. These badges, by virtue of their high capacity for most enzymes, stability, specificity, sensitivity, 
and resistance to harsh environmental conditions, can be used under diverse conditions encountered by 
troops in the field. These badges should be suitable for a variety of sensor schemes for both chemical 
weapons and pesticides. These badges should be suitable for first responders, Navy seals, and also civilian 
populations gathered in large numbers such as sports activities, subway stations, airports, crop dusters and 
farmers. They could be incorporated into the telemedicine initiative as electrochemical organophosphate 
probes when mated to an automatic reader.  
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